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Abstract. Some new identities for quantum variance and covariance involving commutators are
presented, in which the density matrix and the operators are treated symmetrically. A measure
of entanglement is proposed for bipartite systems, based upon covariance. This works for two-
and three-component systems but produces ambiguities for multicomponent systems of composite
dimension. Its relationship to angular momentum dispersion for symmetric spin states is described.

1. Introduction

Several measures of entanglement [1] or quantum correlations have been proposed: some
are associated with the preparation of the state, others with the process of purification or
distillation [2] and yet others with the notion of mutual information or relative entropy [3]. In

this paper we wish to suggest another measure, based on covariance, in which the acts of state
creation and observation are considered in a dual manner.

In practice it is very natural to describe the condition of the system (its method of
preparation or lack of it) in terms of a density matrix which is tied to the subsequent observations
on it. This is how the linkage between observer and observed occurs quantum mechanically,
and of course the results are expressed in terms of traces over appropriate functions of the
density matrix and of the operators being measured [4]. Indeed, Mermin [5] has taken the
view that the density matrix, and the correlations between observables which thereby ensue,
constituteall of physical reality.

In this paper we will also focus on the density matrix. Because binning of observations is
a necessity in practice, the dimension of the density matrix is thereby determneeharate
bins produce a density matrix that is anN x N Hermitian matrix, satisfying the usual
hermiticity and trace conditions. In this way, we can regard the basis &slawel system,
rather like a particle of angular momentuim= (N — 1)/2. Hence, although we might be
studying the probability distribution of an observable which actually possesses a continuous
spectrum, we can still regard it as a spin-like system; in practical terms, the bigger the binning
numberN, the greater the precision of the information about the continuous variable, but
obviously N is never infinite For spin measurements, we need not go to such pains because
N is fixed for us at the start.

With the focus on density matrices, we will carry out measurements (without mutual
interference) on two subsystems, 1 and 2 say, so their corresponding observables, superscripted
by (1) and (2), are commuting operators. The system will be separable [6] or ‘disentangled’ if
the larger density matrix is merely a direct product of density matrices associated with the
two subsystems, g5 = p'Y ® p@; a particular case arises when the initial or prepared state
is the direct product of two subsystem statgs), = [¢)|x®). When two subsystems are
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disentangled, the results of measuring any quaurti®y in the first subsystem are not tied to
the results of measuring any quantB{? in the second subsystem; necessarily

<A(l)B(2)> — (A(l))(B(Z))

for all choices ofd and B. However, ifp # pP ® p@, the configuration is non-factorizable
and the covariance,

COV(A(l)B(Z)) = <A(l)B(2)> _ (A(1)><B(2)> (1)

no longer disappears.

The real issue is how to quantify the entanglement or lack of factorizability [6] of the
larger density matrix. Several proposals have been advanced in the literature, but none of them
is entirely simple or definitive [1]. However, all researchers in this field seem to agree on the
following three conditions for an entanglement meadti¢g):

(1) E(p) = Qiff pis separable, ie if the density matrix can be writtepas ) ", p; pfl) ®,0,~(2).

(2) Local unitary transformations should leak€p) invariant.

(3) E(p) should not increase under local measurement and classical communication
procedures, we intuitively know that such procedures cannot add non-locality
characteristics to the system being measured.

As an extrarequirement, it would be nicéifp) gave some indication of the extent of violation
of Bell-type inequalities [4].

In this paper we want to put forward a concrete scheme for quantifying correlations
between two subsystems and their possible entanglement. The scheme is based on a
generalization of (1) and particular choices of operatéf8 and B®, which are readily
applicable and rooted in the density matrix notion. In the next section we discuss several
matters connected with non-separability of states and their influence on subsequent subsystem
measurements. Because we deal with practical observations, the density matrix is truly discrete
and we can assume that the elements of the vector space on which it lives have equal weight.
As already mentioned, one may regard the dimenaica N + N® as corresponding to
a ‘spin system’, with each componerdrrying equal weightand can adopt the same stance
for the subsystem dimension&™?. (This restriction can be relaxed if the components have
unequal weights, such as atomic energy levelsfatii@ temperature.)

The next section deals with the generalities of simultaneous measurements and their
covariance propertiest. Thisis followed by our suggestion for quantifying entanglement of two
subsystems within a larger entity, which is shown to be consistent with normal expectations
for two spin subsystems, wheN™® = N@ = 2. We also discuss the use of total spin
dispersion [7] as another measure of entanglement, with an allied appendix concerning the
Majorana—Penrose [8] representation of spin states on the Peisphere. The subsequent
sections deal with entanglement measures for larger valug®fand N@. Finally we
discuss general questions pertaining to our suggested measure; these include Rovelli's notion
that information in quantum mechanics is relational [3], Mermin’s notions of correlations
between local observables [5], and the difference between our modified correlation measure
with classical correlations for impure states.

2. Correlations and density matrices

Elementary texts on quantum mechanics teach us that the results of all physical measurements
and processes can be tied to the evaluation of traces of products of observables with the

t The authors of [9] and references therein, discuss the nuances of covarianceriontemmutingperators.
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Hermitian density matriy. Thus, statistical formulae like
(F)=Tr(pF)  Tr(p?) <1

etc are part of the standard repertoire. Of courseptieggenvalues lie between 0 and 1; in
the latter case we are dealing with a pure state when the density matrix reduces to a projector
p — Py = |¢)(y], while the most random situation = 1/N corresponds to the case of
maximum entropy.

The covariance for any two commuting observabies in a mixed state is defined as

COV, (A, B) = (AB) — (A)(B) = tr(pAB) — tr(pA)tr(pB). )

Clearly, vap,(A) = cov,(A, A). Less well known is the fact that pure state dispersions and
correlations can be neatly expressed in terms of a single trace. Consider the quantity

Co(A, B) =tr([p. A][B. p])/2 = tr(p*{A, B}/2 — pApB) ©)

where A and B areany two operators. This quantity will be referred to as #iernative
covariance .

We now present some elementary results ab@utwhich follow simply from this
definition:

(1) Co(A, B) = C,(A — a, B — b), wherea, b are any two constants.

(2) Cp(aA,bB) = abC,(A, B).

(3) Cp (2 Ai Zj Bj) = Zi,j Cp(Ai.Bj).

(4) C,(A, A) =tr(p2A% — pApA).

(5) Cy,ut(A, B) = CP(UTAU, UTBU), whereU is any unitary transformation. Thus a
change of basis for the state is equivalent to an inverse change of basis for the operators.

(6) C,(A, AHC,(B, BT > |C,(A, BN|?. This follows by considering the operatdr =
[p, A — cB], with ¢ = tr([p, A][AT, p])/tr([p, A][ BT, p], and noting that 477 ") > 0.

(7) C,(A, ATy isreal.

(8) IC,(A, B)|? is symmetrical under interchange, conjugation and change of phase of the
two operators.

All of these properties are shared by the usual covariancgdo\B). Nevertheless, alternative
covarianceC, does not provide an indication of variance and covariance in the usual sense.
For instance, if the state is one of maximum entropy, on the one hand we&hédeB) = 0

for all A, B because is proportional to unity; on the other hand, the go¥, B) need not
vanish. Some special cases for the operatorB can now be studied.

(1) If AandB commuteC,(A, B) = tr(p>?AB — pApB).

(2) If A andB are both HermitianC,(A, B) becomes real.

(3) If A andB are both unitaryC,(A, AT) = tr(0? — pApAT) < tr(p?) < 1. Likewise for
B. SinceC,(A, ANC,(B, BT) > |C,(A, BN|?, it follows that|C, (A, B)|? < 1.

More particular cases arise when the system is prepared in a purg/state thato becomes
a projection operator and, (A, B) reduces to

C,(A, B) > S(W{A, BYW) — (W|AIY)(W|Bly) = 3({A — (A), B — (B)})
= COV,(A, B) when [A, B] =0. (4)
Thus
C,(A, A) — (A% — (A)% = var,(A). (5)

T Evaluating traces of larger numbers of pure state commutators, one may establish algebraically that for odd numbers
of products, the traces do vanish. For instandgAtrp][ B, p][C, p]) = 0, etc.



1898 R I A Davis et al

This is in keeping with the familiar variance—covariance inequality
var, (A)var,(B) > |cov,(A, B)|. (6)
If AandB are commutinginitaryoperators and becaus®, (A, B)|?> < C,(A, A)C,(B, B) <
(tr(p?))? < 1, we see that alternative covariance only attains a value of 1 for pure states.
It is worthwhile comparing the two covariance functions, in relation to two commuting

observablesd, B. Since A, B] = 0, select an orthonormal bagi$ wherein the operators
are simultaneously diagonalized, so

A= Z|i>a,~<z'| B= Z|i>b,~<i|.

Then
cov,(A, B) =tr(pAB) — tr(pA)tr(pB)
=Y aibililpli) = Y _aibi{ilpli)(jlplj)
i ij
= Zai(b,- —bj)(ilpli){jlelj)
ij
and similarly

C,(A, B) =tr(p?AB) —tr(0pApB)
=Y ai(b; —bj)ilplj)(ilpli)
ij
since}_ (jlplj) = tr(p) = 1. Furthermore, note that, ;(i|olj)(jlpli) = tr(p? < 1.
Upon symmetrizing the sums, we obtain the neater expressions,

COV, (A, B) = Y (ai — ay)(bi — bj){ilpli)(jlplj)/2 )
ij

C,(A, B) = (a; — bj)(bi — b)ilplj){jleli)/2. (8)
ij

Whilst the ordinary covariance has a clear meaning—namely, a measure of the correlations
between the results of local measurementsnd B that commute—the interpretation of the
alternative covariance is less obvious.

We can obtain more insight by choosidg= B. Sincep is a positive definite Hermitian
operatorilpli){jlplj) = {ilplj){jleli), for any two state), | j). Therefore for a general
(mixed state) density matrix,

> @i —apXilpli)jloli) = Y (@ —apilpli)jlpli)
i ij
or
var,(A) > C,(A, A). 9)
In the light of the variance inequality above it is natural to ask whether
lcov, (A, B)| = |Cy(A, B)|

is true. In fact a single (but carefully chosen) counter-example suffices to show that it is false:
in local basew, d for two local operatorsl ® 1 and 1® B, take the form

p = |(uu +dd))((uu +dd)|/4 +|ud)(ud|/4 +|du)(dul/4
and select the local operators to be diagonal,

AQ® L= (luu)(uu| + |ud)(ud|) — (|du)(du| + |dd){dd])

1® B = (luu)(uu| — |ud)(ud|) — (|du)(du| — |dd)(dd]).
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Evaluation of the two types of covariance leads to
cov,(A,B) =0 but C,(A,B)= 3.

Thus the variance inequality cannot be extended to covariance.

However, an immediate consequence of the inequality(¥ar> C,(A, A), is that when
var,(A) = 0,C,(A, A) = 0 too for any observabld. But 2C,(A, A) = tr([A, p][A, p]1);
S0 [A, p] = 0, which means that is purely in an eigenstate d@f. This accords with the basic
tenets of quantum mechanics of course. The contrapositive of this result is thapif # 0,
then vay,(A) > 0.

Another worthwhile comment stems from the observation that i$ conjugate t in
the sense4, X] = ik, then

X 0X

2
with equality only applying to pure states. For example, the energy uncertainty is given by
(AH)? > Eztr(|‘(’j—f|2)/2, while the momentum uncertainty is given by the derivative of the
density matrix with respect to positiofA P)? > Eztr(|§—§|2)/2, and so on.
For a general mixed configuration, the two inequalities,
var,(A)var,(B) > C,(A, A)C,(B, B) = |C,(A, B)|2
together with the well known inequality
var, (A)var,(B) > |cov,(A, B)|?

provide a lower bound for the experimentally observed variance products of any two operators,
whether or not they commute. For instance,

1_ dp 9
e op 9P
2 aXopP
In the next section we present examples of operatorB, for which there exist states such
that|cov, (A, B)| > |C,(A, B)| and also other states for whi¢é,(A, B)| > |cov, (A, B).

Hencebothinequalities must be considered jointly in an examination of the minimum of the
variance product, together with Heisenberg’s well known lower boldn@[ A, B])|/2.

,
2C,(A, 4) = tr([p. Allp, A") = Fr (3_”3_9 ) _
Thus,

var,(A) = (AA)? > T2tr <‘8—p

X

2
var,(X)var,(P) >

3. Correlation measures for pure states of two subsystems

This section examines the correlation properties of the entanglement of two subsystems in
a tensor product Hilbert spadé® @ H@. By definition, measurements can be carried
out without mutual interference on the two subsystems so their corresponding observables,
superscripted by (1) and (2), are commuting operators. As mentioned in the introduction, a
state of the system is factorizable or disentangled if the larger density maisixnerely a

direct product of density matrices associated with the two subsystemszgr® @ p®. For

any two local operatord™® = A ® 1, B? = 1® B, it is easy to show that the covariance
disappears:

coV,ag,a (AP, B?) = (A — (A) ® ((B — (B))) =0. (10)
This includes the case of a pure disentangled stajes |¢™V)[¢@).
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Having noted that the covariance is nonzero in disentangled states, we now refer to
the conditions imposed upon any measure of entanglement. The second condition is that
it be invariant under local unitary transformations. With this in mind, definectivariance
entanglementor pure states as

Esvpa(p) = max |covy,y+(AY, BP)|.
U=U0QU®
The maximum will clearly be invariant under additional local unitary transformations.

Since the operation of permuting the elements of a Hilbert space is unitary, all elements
of the Hilbert spaces are equally important. For this reason, it is natural to select the operators
AL and B® so as to equally weight the elements of the Hilbert space. The next section
describes several ideas for achieving this, starting with the simplest case.

3.1. Pure state correlations fav® = N©@ =2

This section investigates a method for quantifying pure state entanglement in the simplest
possible non-trivial case, corresponding to two sﬁ)h;ystems, with Hilbert spad&é®H, where

H = C?is a local Hilbert space, with orthonormal bagis, |d). Consider two local operators
which distinguish between elements of the local Hilbert spaces. With the aim of weighting
local basis elements equally, define operators in the product |pasisud), |du), |dd) by

1 1

-1 -1

1
ADBR — ;D2 -1 .
1

Next consider the pure (normalized but arbitrary) state,
|9} = atluu) + Blud) +y|du) +é|dd).

Working out coy (A4, B) in this state, it is straightforward to show that the covariance is
maximized provided tha| = || = 1/v/2,8 =y =0, 0r|f| = |y| = 1/v/2,a = § = 0.
Thus one may take the four independent Bell states,

110) = [lud) + |du)]/¥2  |00) = [lud) — |du}]/~/2
|14) = [luu) +dd))/~V2  |1=) = [Juu) — |dd)] /2

as the ones that have the largest covariance. (These pure states are also known to be the most
entangled ones.) Of course they are all local unitary transforms of just one of them, say the
Bell state,|1+) = |(uu + dd))/~/2, with a corresponding = |uu + dd)(uu + dd|/2. If one
rotates the operators, B togetherabout the y-axis’ by the same amount, we can get a good
idea of how the covariance varies with rotation angle; maximization is attained when the angle
isnm. See figure 1.

If a pure state is disentangled, then there is an orientation of the d&aivhich has
zero variance. To see this, rotate the state by local unitary transformations until the reduced
density matrix for the local operator in question is diagonalized. Since the initial state was
pure and disentangled, then it may be represented by a separable prpjectpf’ p@, in
which both reduced density matrices are projectors. Thus the main diagopétsard p®
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Figure 1. Equal-weight covariance of the Bell stafiex + dd)/~/2 under equal local unitary
transformations about two axes.

can be reduced to a single 1, with 0 elsewhere. Hence for diagonalized local opdratais
B in this basis,

(A?%) = (A)? (B?) = (B)?

so the variances vanishes. Figure 2 illustrates the behaviour of the variance in a two-variable
parametrization. The horizontal axis variableparametrizes a set of pure states which
range from disentangled to a maximally entangled Bell state, and back to disentangled again,
i.e.p = | @) {¥(x)| where|y(x)) = cosx)|uu) + sin(x)|dd). The second variable
parametrizeg-axis rotations of the local spin basis (1) associated witilone.

These results may be applied to actual spin measurements. If one knows that a state is
pure, but is not certain of the degree of entanglement, local spin measurements can be made
in a variety of directions. If the variance and covariance of these measurements vanishes in a
pure state, then the state must be disentangled.

3.2. Pure state correlations fav®d = N@ =N > 2

Many different choices of local operatots”, B are possible, and different choices will lead

to different behaviour of the covariance. However, before considering two sensible choices, let
us note that fov® = N@ = 2, one of the maximally entangled states can be taken to be the
state of total spin10), while minimally entangled states gtkl), |1 — 1). Now for these state
combinations maximal entanglement happens to equate with maximal dispessiohand

zero entanglement equates with minimal dispersioni)?, whereJ stands for total spin. This
suggests that for higher spin, some maximally entangled states might be found by minimizing
the total angular momentum dispersion and vice versa. This approach towards quantifying
entanglement is quite interesting in its own right and is pursued in appendix A, where we also
tie it to the Majorana—Penrose pictorial view of spin. In appendix B, by contrast, we classify
any measure of entanglement via an integrity basis for density matrix invariants.

3.2.1. Pair discrimination. Consider two-system Hilbert spaces where the local spaces may
each have dimension greater than 2. Select local operatdrs= A ® 1, B? = 1® B,
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Figure 2. Equal-weight variance of a parametrized set of pure states, under different relative
orientations of the state and the local operators. The maximally entangled stateshawg4,

and are the only states to attain a covariance of 1, whilst the disentangled statd f/2) are

the only ones which attain a covariance of 0, for particular relative transformations of the local
operator.

whereA, B may be expressed in their respective local bases as unitary transformations of the
following diagonal matrix:

1 0 0
0 -1 0 -
o o o ... (11)

Next, maximize the covariance over all such unitarily transformed matrices; the result is
perforce invariant under local unitary transformations of the state. Labelling the local bases
la;) and|b;) respectively, where runs from 1 toN, operators like the above discriminate
between pairs of elements in a local subspace of the full Hilbert space, and treat terms of the
form |a; b + a;b;) as the basic element of entanglementt.

3.2.2. Equal-weight unitary operators.Since we wish to handle all the subsystem states
democratically, let us define an equal-weight local unitary operator as consisting of some
unitary transformation of a diagonal matrix comprising ¥ roots of unity. (Note that these
matrices are not Hermitian whe¥h > 3 and cannot correspond to observables.) Here the local
weight unitary matrices in their corresponding diagonalizing basis, up to an overall phase, are

T Another possibility is to replace all the zeroes along the main diagonalafB with 1 or —1; this makes the
operatot unitary, which means that its variance is simply [{U)|2. However, the distribution of th¢1 eigenvalues
is not self-evident, except for the spé@ spin% case.
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given by

exp2inr/N)
exp(din/N)

1

Only for the spin% X spin—% case, do these operators correspond exactly to the pairwise local
unitary operators used previously. The next nontrivial casg is 3, or spin-1x spin-1.
In this case one can see that all states which are local unitary transformations of the pure
state|aiby + axb, + asbs)/~/3 have a maximal covariance of 1. To understand why, rotate
the equal-weight unitary operators so that the local steies,, a3 and b1, b,, b3 produce
eigenvalues which are respectively conjugate pairs. This yigldeB®) = 1. However,
(ADy = (B@) = 0, so the maximized covariance is 1.

What of other states, such kgb; + azb,) whenN = 3? The following theorem gives a
necessary and sufficient condition for a state to extdihit= 1, with respect to these equal-
weight operators and is in agreement with all other pure state entanglement measures.

Theorem. The only pure states which attain the maximized covariance of 1 under equal-
weight local operators are states which are local unitary transformationg@f; + axb, +
---+ayby)/~/N. Any other states exhibit smaller correlations.

Proof. In a tensor product spad&? ® H@, consider the state

W) =Y cijlaib;)
i,j

wherep;; = |cij|2 > OandZi’j pij = 1,andthe orthonormalbasges), |b;) are acomplete set

of eigenstates for the diagonalized equal-weight unitary operatérsB @, with eigenvalues
ay = exp(ink/N), b; = exp(2ixj/N) respectively. Recalling the result for sugk?, B
that

L= {AD)D) A= {BD)?) = (AVBD) — (AD)(BD)[?

we see that a maximized covariance of 1 is only attainable in a state hgere (B) = 0,
whereupon the covariance reduces to

Zpijaibj

iJ

CV,(A(D, B(Z)) —

In what cases is this expression maximized, subject to the condition that the mean values of
the operators remain zero?
We are seeking to maximi2é_ p;;a;b;| subject to

Zpij =1 ‘Zpijai =0 ’Zpijbj
By the triangle inequality,
Z pijaib;

where equality holds at every stage only if all the complex numbgrs have equal and
opposite phase. This means that we are paijng; such that nonzerp;; (only fori = j)

=0.

Z pijaib;

i,j>1

< pailaiby| +

<-- < Zpij|aibj|
ij
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are associated in a one-to-one manner wibh = 1 for all such pairs, otherwise the parallelism
of the complex numbers will be lost. This will ensure that

Zpii|aibi| = Zpii =1

At the same time we have to guarantee that the average valudsawfd B vanish or

| > piiail = 0,1 pibjl = 0. Sinced_,a; = ) ; b; = 0, asufficientcondition for this

is that for all such pairs, the weightings are equapr= 1/+/N; in other words every; and

its corresponding; = a; only occurs at most once in the terms with equal nonzero weighting.
(Actually one may introduce an arbitrary phase igtowithout affecting this conclusion, but
we have chosen not to do so.)

Having established that the states which maximize the covariance can take the form
la;a} + apaj + ---), we should point out that it is not necessary &t the terms to be
paired up. Consider the cadé= 4, or spin% ® spin—g systems, with bases, ..., a4 and
b1, ..., ba, respectively. Itis possible to attain maximized covariances of 1 under the equal-
Weight measuresothfor |[Yr) = |a1b1+a2b2)/\/§ and f0r|¢) = |a1b1+a2b2+a3b3+a4b4)/2.

This is achieved by choosing eigenvalues so tH&t) = (B®) = 0 and yet pick eigenvalues
such that the values of ¥ B@ in the statesaib1) ... |asbs) are all 1. As we are in a four-
dimensional space, we can achieve this by taking the eigenvalyd setk} and{1, i, —1, —i}
for both operators on both statgs) and|¢), respectively.

This observation means that the ‘equal-weigfitbased measures fof > 2 are not
measures of entanglement, under the standard criteria. Information-based entanglement
measures, such as the relative entropy, specify fthatis less entangled thafy). It
appears that the covariance-based measures of entanglement are most useful when dealing
with spin—% ® spin—; systems, since in this case there is no ambiguity as to the choice of
eigenvalues. Similarly for operators of prime dimension, such ambiguities are absent, because
there is only one way to arrive at a maximally correlated state: the non-uniqueness only pertains
to composite-dimensional local spaces. |

The above result demonstrates that for pure states, the reduced density matrices must be
diagonalized in order to maximize the covariance of the diagonalized local unitary operators.
However, for mixed states it is not at all obvious that the reduced density matrices must be
diagonalized in order to maximize the unitary matrix covariance. This issue will be examined
in section 4.

3.3. Pure state correlations fay ™V # N@

For spaces of differing dimension, such as spin—$pin—;, the covariance of the pairwise
operators behave just as in the other cases. However, if the equal-weight local operators are
used, covariances of 1 anet attainable This reflects the fact that the bases have different
sizes, and so there is no way to pair up elements between the bases in a one-to-one manner so
as to produce a set of product eigenvalues with the same phase.

The simplest example which exhibits this effect is a s@i@spin—l space, with equal-
weight operators

AY = diagl, -1 ® 1 B®@ = 1® diag(1, exp(2in/3), expdin /3)). (12)

As with the proof that the states of maximum covariancea + - - - +a,b,), a covariance
of 1 is only attainable ifAY B@) = 1; we also need the complex numbefsa;b; to have
the same phase (where the state has Schmidt decompwuienzl.j /Pijla;b;) in the basis

of eigenvalues of the operatassd®?, B@). Following similar arguments to those used in the
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Table 1.

Density matrix lcov, (AD, B@)? IC,(AD, B@)?

p1 = [luu)(uu| +|dd)(dd|]/2 1
02 = [ Sluu) (uul + 3 uu +dd) (uu + dd|] 3
p3 = |uu) (uu| 0
p4 = |uu +dd)(uu +dd|/2 1

= ONF O

proof, it is not possible to choogg; so that the direction condition is satisfied; this is because
no repetitions of; or b; values can occur in the set of nonzexg, since the resulting;;a; b;
would not have the same phase. However, it is not possible to partially pair up the given set of
eigenvalues so that the directions of the products are the same, by straightforward enumeration
of the cases. Thus states in this basis cannot attain covariances of 1.

Clearly many other local operators can be defined which provide a variety of different
correlation measures for two-system states, but none stands out.

4. Correlation measures for mixed states

Making a distinction between quantum and classical correlations has proved a thorny problem
in the study of quantum entanglement. The nature of the problem may be seen when
comparing the two states, one pure and one mixed, which possess the same covariance for
AD = B@ = g3

$luu +dd) (uu + dd| and 2 luu)(uu| + 3|dd)(dd|.

The first state is a Bell state and is maximally entangled, whilst the second state is a mixture of
disentangled projectors, and is normally regarded as being disentangled. As both states exhibit
correlations, it is natural to ask whether the alternative covariance introduced in section 2
provides a way of distinguishing between classical and quantum correlations.

4.1. Distinction betwee@', and coy,

Take any two commuting local measuremem) = A ® 1, B? = 1 ® B, and define the
function

Eap(p) = maxy|Cyput(AY, BP))|? (13)

where the maximum is now taken over all local unitary transformations of the genixed
density matrixp. In previous sections we investigated the behaviour of this function for pure
states (wherC, reduces to the covariance), and found that it appeared to have many of the
properties desirable in a pure state entanglement measure.

The situation where the density matrix corresponds to an impure configuration is more
intriguing. Table 1 provides a comparison of the behaviour of the two maximized covariance
entanglement measures, in several example configurations, which illustrate the distinction
betweencov,(AY, B@)|2and|C,(AY, B@)|2.

The illustrative stat@, is pure but entangleg;g is factorizable and therefore disentangled,
while the matrixp; is not factorizable but can be expressed as a sum of separable projectors;
thereforep; should represent a disentangled configuration, according to standard expectations.
By inspecting the table we see that gatt P, B@), being nonzero, is not a good entanglement
measureE (p), but the alternative, (AY, B®@) is better in that it does vanish.

The alternative covariana@in mixed states is bounded above bgptt), so the state must
be pure to obtain a covariance of 1 under local unitary transformations. Another point worth
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(a) |cov, (AT, B®)] (b) |C,(AD, B®)|
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

Figure 3. (a) Equal-weight covariance magnitude of a parametrized mixture of different Bell states.
(b) Equal-weight alternative covariance magnitude for the Bell-state mixture. The parametrization
in both cases is any one of the followingg = x|b1)(b1| + (1 — x)|b2)(b2|, where either

|b1) = |ud £du)/~2,\b2) = |ud Fdu)/~/2, orelsdbr) = |uu+dd)/~2,|bs) = |ud Fdu)//2.

The Bell states must be different in these parametrizations, to obtain a non-trivial result. The result
is not a maximization over all local unitary transformations.

(@) |cov,(AD, B@)| (b) |C,(AD, B?)|
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

Figure 4. (a) Equal-weight covariance magnitude of a parametrized mixture of different Bell states.
(b) Equal-weight alternative covariance magnitude for the Bell-state mixture. The parametrization
in both cases i = x|b1)(b1] + (1 — x)|b2) (b2], Where|b1) = |uu + dd)/~/2, |b2) = |ud +
du)/~/2. The Bell states in these parametrizations may be used in any combination allowed by the
above expression (i.e. all four sign combinations are permitted). The result is not a maximization
over all local unitary transformations.

remembering is that for configurations of maximum entropy whese 1l and commutes with
all operators( is automatically zero.

Figures 3 and 4 depict the squares of the equal-weight classical covariance and alternative
covariance of a parametrized mixture of different Bell states. They show that both covariance
measures attain a maximum of 1 only for the pure states, and that the behaviour of these
functions depends upon the kind of Bell states involved in the mixtures.

Foranychoice ofAY, B, a maximizedC,(AY, B®) of zero occurs for many mixed
configurationsp which are disentangled, according to the standard definition of a mixed
state, such as the states of maximum entropy itk 1. This behaviour of the alternative
covariance for ‘partially entangled’ configurations is what one would naively expect for a mixed
configuration entanglement measu#é). However, there is a particular class of mixed states
which are disentangled according to the commonly accepted definition of a mixed state, whilst
exhibiting nonzero alternative covariance properties.
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4.2. Conditions on entanglement measures

This section assesses the alternative covariance as a measure of entanglement, according to
the principles outlined by Vedral and Plenio [1].

Firstly, consider the cases where a state exhibits zero quantum correlation. A mixed
configuration is usually defined to be separable if it can be written as a sum of separable
projectors; thus

1 2
p= Z p_fpj(» '® 0 ) Pi(")P}") =8in,".
J

Then for any such,
Cp(A(l), B(Z)) — tr(pzA(l)BQ) _ ,OA(l)pB(Z))

—o((Srntaen?)(Srof o 8))
‘”(( Y pinlA® p,@) (Z pirj’ @ pﬁ'z)B))

D, A 2 p @2
= > pipitr(pPApl” ® ' Bp}?
D, 2 (2
0P 40 ® 5?5 B)
D, 2 p (2 2 @
= E E pipitr (p) )AP,(- ir o) (of )B,Oj(- ' — pf )Pﬁ 'B)

or
1 1 1 1 2 2
> > pipitra (o ApiY — o oV A)tr ) (02 Bpl?)

which is guaranteed to vanish if th:é”) are projectors.
Now consider cases where the density matrix is a mixture like

S luw)(uu) + 51 +d)(u +d))((u +d)(u +d)|.

Here, it can be shown that these mixtures produce norZgid, B), because their expansion

into projector traces may be used to extract off-diagonal elements of observghie
suitable local bases. Take, for instance, the two local operators on separa%tﬁm'as,

A = B = oy, which is a unitary transformation of the equal-weight madxised previously.

The terms in the expansion 6fabove are non-vanishing only if non-parallel, non-orthogonal
projectors are used. Thus we evaluate the two non-vanishing terms, with local projectors
lu+d){u+d|/2, |u){u| giving

(u +dlu)(u|Alu+d)((u| Blu +d)(u +d|u)
—(u+d|Blu)(ulu +d)) = (—i)(—i —i) = =2
(ulu +d)(u +d|Alu)((u +d|Blu)(ulu +d)
—(u|Blu+d)(u+dlu)) = ()i +i) = —2.

These terms do not cancel, and the other two terms in the expansion are zero, so the alternative
covarianceC,, is nonzero even though we are dealing with a disentangled state, according to
the usual terminology.

From this we deduce that the meas#irbased on alternative covariance® a measure
of entanglement (according to the conditions provided by Vedral and Plenio) when mixed
states are encountered, since it violates the first condition for such measures.
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4.3. Local purification procedures

The third condition on entanglement measures proposed by Vedral and Plenio is that the
entanglement of a state should not increase under the three types of purification processes
(LGM, CC and PS).

Let us consider all possible LGM, CC and PS measurement operations which act on a
disentangled state

po = |uu)(uul
and yield states which exhibit nonzero quantum covariahget ™V, B?), such as
p1 = gluu) {uul + g +d)(u +d))((u+d)( +d)|.

The change frompg to p1 may be performed by the classically correlated set of local
measurementgy, ..., Vg, where

1 1
Vi= —=|uu)(uu| = —=u)(u| ® |u)(ul|

ki N
Vo= 2_ﬂ|(u +d)(u+d))(uu| = 2_ﬁ|(u +d))(ul @ |(u+d))(ul

together withVs, . . ., Vg which have(ud|, (du|, {(dd| in place of(uu|. Thus)_ V,»,ooViT = p1,
and)’ VZ.TV,» o 1, so this represents a complete measurement.

Because this set of operatioFisis local, we would expect any measure of entanglement
to not increase under these operations. However, the state which results from this procedure
does in fact exhibit nonzer@,, as was demonstrated earlier. Therefore, we have found
a complete local general measurement for which the entanglement increases based upon
alternative covariance. Thus the unitarily maximizgddoes not satisfy the conditions for a
measure of mixed state entanglement proposed by Vedral and Plenio.

5. Conclusion

We have shown that for pure two-state systems, the maximized covariance agrees with other
measures of entanglement in specifying which states are disentangled and which are maximally
entangled. For subspaces of larger dimension, the situation is less clear-cut since there are
ambiguities in the process of selecting eigenvalues for the local operators, but it is possible
to obtain information about the degree of higher-order correlations of two subsystems in this
way.

The variance and covariance could be used to indicate the best measurements to make
to detect entanglement of bipartite systems, by locating the unitary transformation which
produces maximum covariance. However, the problem of mixed state separability measures
is not resolved by the correlation functiofsand the covariance, as we have used them in
this paper. Nevertheless, the link between alternative variance and the conjugate variable
derivatives for position, momentum, energy and time is intriguing, and might be extended to
other quantized models involving conjugate variables. The inequalitkyap C(X, X),
with equality for pure states, should be applicable to situations where observations are made
upon impure states.

Itis interesting to observe that for pure density matricglsoth the average value and the
variance of an operatdr are symmetrical under the interchangeoand F, when expressed
in the form

(F) =tr(pF) var(F) = C,(F, F) = tr(p’F? — pFpF).
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This motivates the suggestion that a quantum gtajes best represented not as a ket, but

as a projection operatd?, = |¢)(y¥|. Any measurement process on the state is relational

in the sense of Rovelli [3]: the notion of state vector reduction is replaced by the notion that
every new measurement process requires a new Hilbert space to be defined, with new operators
corresponding to the new state and any successive measurement made upon the state. The basic
idea is that a measurement treats the state information in a comparative sense, with meaning
only in relation to the operator corresponding to the observable quantity being measured.

The process of state reduction to the eigenstate of some observable under a measurement
is an apparent oneresulting not from the action of theperator corresponding to the
measurement, but frosome othephysical process which occurs in the measurement, such
as afiltering process of some kind (like the case of a Stern—Gerlach experiment), datesing
measurements on the physical system taepeesentedh a completely new basis by new state
and measurement operators. The adoption of the projector as a unit of relational information
does not change any predictions of quantum mechanics in terms of average valuest.

Appendix A. The Majorana—Penrose representation of symmetrized states

It is well known that a spin statg, m) can be obtained by forming a fully symmetric direct
product ofn = 2j spin- states. Denoting the spihstates byu) = |3, 1), |d) = |3, —1),
the sping states are given by
2j
.. ——
1j. J) = |uw. - u)
lj,j—L=[ldu...u+rud...u+---+uu...d)]/vV2j

om) =Y 167" (@) / VZ Con

(14)

sym

lj,—J) =ldd...d).

In the Majorana—Penrose representation [8] these states are mapped onto the unit sphere, with
stereographic projectiontaken from the south pole onto the complex plane by making the
association

lj,m) <> \J2Camz™™. (15)

This association may be rewritten in terms of the s%)ibasis in an elegant way which

emphasises that thé powers are proportional to a symmetrized sum Wh'emnin—; terms of
spinju), and(n — i) spin|d) terms are selected, namely

HCiamz’™ < lu...ud...dy+---+|d...du...u) (16)
where the sum is taken over all ways of select‘irsg)in—; elements from the 2+ 1 elements

in the spiny space.
Thus from a general spin statg) = >, ;.| jm) we can define a polynomial

2 2j-1
p(2) = azjz” +az;1z%" " +---+ael

t The paradox of Schidinger’s cat is resolved by representing the cat’s state and the measurement on an equal footing
as projection operators in the (relational) bdsigthat measuremenfraces are taken to predict average real-number
values, but at no stage does one say ‘the cat is in a state’, since the state projection @heoaigrhas relational
significance in this interpretation.
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North pole

N
=

Figure 5. Majoranarepresentation of the state
with polynomial(z — i)(z +1).

South pole

whereajv, = /% Cim¥;nz’™. The roots of this polynomialt give j2points on the
stereographic plane and, correspondingly, a general sgiate, being some superposition
overm values, will be described byj2distinct points on the Poincarsphere, obtained by
stereographic projection of the roots placed on the horizartaplane. Itis worth remarking
that another spin state’), represented by another polynomial,

p'(2) = aéjzzj + a’zj_lzzjfl +... 4 a(/)]_
yields a scalar product,

W) =) ajsma,/? Com.

In the case where the degreeof the polynomial is less thanj2 2j — m additional
points at the south pole (the projective point) are added to the projection, corresponding to
‘roots at infinity’. Figure 5 depicts an example of stereographic projection for the spin-1 state
represented by the quadratic polynomial

P =(G—z+)=22—1<[|1) +]1 - 1)]/V2. (17)

By contrast, for spin-1, the maximum and minimum spin stéte$) and|1, —1) correspond

to two repeated points at the north and south poles, respectively; on the other hand, the pure
intermediate spin statfl, 0) = |ud + du)/~/2 corresponds to one point at the north pole

and the other at the south pole. The Bell statest) = |uu + dd)/~/2 are also antipodal
points, but are located around the equator, specifically at coordinates (1,0,0) &r@j Q);

and (0,1,0) and (0-1, 0). Under all accepted measures of entanglement, the spin-zero state
|0, 0) = |ud—du)/~/2, the Bell statell, +) and|1, 0) (in fact, all local unitary transformations

of these states) are maximally entangled. This suggests that taking the two points as ‘far apart
as possible from one another’ on the Poitgcgphere is one possible way of producing maximal
entanglement.

¥ The action of exponential functions of angular momentum operators on Majorana—Penrose polynomials are
amusing. We quote them without proof: (i) &%p;)p(z) = exp(—£/)p(z€); (i) expEJ_)p(z) = p(z + &);
(iii) exp(§ J+) p(2) = 2% p(z/ (2 + D).
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Another point of interest is that for these spin-1 states, the rotationally invariant dispersion

measure,

(AD? =(T-T)={J)-(J)
attains the maximum value of 2, becau§e vanishes; so it also suggests that the quantity
(AJ)?/(J)? might serve [7] as a way of characterizing the entanglement of the indivgiual
spins that make up thgstate. In fact, the dispersion ihis equivalent to dispersion in any of
the componentd @ and to the covariance of any two components. This is because the total
angular momentum ig = J + J@ +... + J™ and all states on the Poinéasphere are
symmetrized; therefore the values taken by all the Id€alare the same. Thus when acting on
these symmetrized states= nJ @, foralli =1, 2, ..., n, and the variance of any local”
is just as good an entanglement measure. We can also take any two subspacesvaluate
the covariance of @ andJ”); the space being symmetrized, a@ny (includingi = j) may be
taken! Thus the symmetrized states of maximig&d)? have maximal covariance of the local
J®, as well. Finally, since we are dealing with sgjrstates,/ have only have two distinct
eigenvalues, and hence these local operators are directly proportional to the equal-weight local
operators of dimension two defined in section 3.

We may use these considerations to find the symmetrized states of maximum dispersion
for arbitrarily high J—these states will have the maximum covariance of any two Ia¢al
From the result in section 4, the local covariance attains the maximum value of 1 whenever
the reduced density matrices for the subspace on which those local operators jointly act are
of maximum entropy. For a spié—space, the reduced density matrices must be of the form
pi = 3llui) (il + |d;) (d; ).

For generalj-values, observe that disentangled states on the Péirspdnere are fully
factorizable since the states are symmetrized. Clearly, a fully factorizable state will have zero
local operator variance for any operator with the local state as an eigenstate. Their&oincar
sphere representation simply consists ef 2 repeated roots, since the general symmetrized,
factorized state is a product efkets

(alu) +b|d)) ... (alu) +b|d)) ... < (az +b)"
because of the-symmetrization properties for spinsystems.

Next it is useful to ask which states maximizaJ)? if this is to serve as a possible
indication of entanglement. Whgn= 1, as we have seenin section 3, the states are represented
on the Poincar sphere by two diametrically opposed points, one example being the state
luu+dd)/~/2. Whenj = %’ the states having maximu J)? are those states which maximize
the covariance of any two local operators. As was seen, such states must be expressible as
symmetrized unitary transformations(@fu)+|dd)) /+/2 in the local basis for the two operators
in question. Thus the overall states must be expressible, by symmetry, as global rotations of
luuu +ddd)/~/2. These are the ‘triangular’ states, namely those represented by three points
on the Poinca sphere arranged in an equilateral triangle around any great circle—a global
unitary transformation (which preserves symmetrization) simply rotates this configuration
around the sphere. Choosing the circle to lie equatorially, a polynomial producing such roots is
p(z) = z%+1, which corresponds to the stage) = [|32, 2)+|3, —2)1/v/2 = luuu+ddd) /2.

When j = 2, the symmetrized states of maximum dispersion are the states with a
tetrahedral representation on the sphere. Choosing one of the apices of the tetrahedron at
the north pole, we arrive at the polynomial

p@) =z(z+ V2)(z — V2™ (z — V263 = 4 + 2V/2;
which corresponds to the maximally entangled state
W) =12, 2) + 2|2, =1)]/3 = |uuuu + uddd + dudd + ddud + dddu) /5.
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North pole

Figure 6. Majorana representation of the state with
South pole polynomialp(z) = z3 + 1.

Note that here, as in the previous case, the maxigndead to vanishing mean valugg| J| v).

Forj = g’ there are two classes of states with maximum dispersion, with slightly different
geometries. The first of these is pyramidal with one apex at the north pole and the other four
apices at equal latitude (or any global rotation of this state), while the second has one point atthe
north pole another at the south pole and the remaining three points distributed equilaterally on
the equator. Hence the first configuration corresponds to the polynpiaiak= z° + z4/+/3

or the statelyr) = [|2,3) + \/§|5-23 —2)]/,/8, whereas the second configuration leads to

p(2) = z*+z, orthe state|B, 3) +13, —32)]/v/2. Both choices have maximu(a /)2 and so
thetotal spin variance is unable to discriminate between thétowever, local equal-weight
measures are able to discriminate between these states, so it seems that in more complicated
cases entanglement is most naturally described by keeping the covariance of local operators
in mind.

In order to use the (rotationally invariant) dispersion as a measure of pure state
entanglement, one needs to consider that the symmetrized nature of the state is a reflection of
the choice of basis. Thus, one might define the variance entanglement for a general state
as the variance of the symmetrized form of the state, under an appropriate local unitary
transformation. However, it is not always possible to symmetrize an arbitrary state with
local unitary transformations in spaces of spin-1 or higher. Thus it seems that the dispersion
is not a perfect entanglement measure, although it does give an indication of the degree of
entanglement of these particular states, because of its connection with the covariance through
symmetrization.

Appendix B. An integrity basis for density matrix invariants

Considerp for a compositeN Y N@-dimensional system as an object transforming under
UND) x U(N?) like {1}{1} x {1}{1}, where{1}{1} denotes the reduciblg? representation

of U(N); in tensor notation we can write in the formpff, where early Latin letters refer to

the first unitary group and the later letters stand for the second group. Here we want to count
the number o/ (NV) x U(N®@) singletsS, in the symmetrized produgt’. Thus, in the
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notation where representations are labelled by partitionst,
P" ~ (11} x {IH{1) ® {n} = Z {kKHAY x {}{v}.
KoAopove{n}

However,{i}{1} can only contain a singlet f = 1. Moreoverx = A andu = v have to
be, respectivelyN ® and N® part partitions, sayx' -y n’, etc, otherwisgx} vanishes in
U(ND), Therefore
Ploxo € Y. i} x (AHA)
K)—N(l)n,M—N(z)n

But it is known thatx o o > {n} for anya - n and moreover the order is immaterial, because
the Clebsch series is symmetric. Thus we have only to count the appropriate partitions,
S = 10" loyx10) = Kk, A Tk Fya n, A Fye n}l.
This is not easy to work out in the general case, but is relatively simple for the case
N® = N@ =2, Whenn is even or odd, the partitions are
n=2k: {2k, 0}, {2k — 1, 1}, ... {k, k}
n=2k+1: {2k + 1,0}, {2k, 1}, ..., {k+ 1 k}.
Now the generating function for invariants of ordein p is written F(g) 1= > o7, S.q".
Including the even and odd cases,
- 2 2% 2 2%k+1 1+4°
F(q) =) [(k+D)%q% +k+D*q* ] = —F5 —.
; (1-9%%*(1-¢q)
The denominator of'(¢) is crucial for its interpretation: we can recognize that for the 2
case invariants are freely generated by two quadratic factors (n@inely?)?) and one linear
factor (hamely1 — ¢)), but there is an extra quadratic factor in the numerator which may only
be used once. We may associate these factors with

(1) Linear to =trptrpp =1 anyway
(2) Quadratic x1=traytrep)? = plipy)  and xo =tr(trap)® = pyl ppi

(3) Extra quadratic e, " ;e pfi pji'.

The last of these invariants is obviously relatedcio x> and trp?); however, we do not get
a new invariant from its square because it is then expressitileely as products of1, x2, tr
p? and (trp)? = 1. Thus effectively trg?) is only allowed once

We conclude thatnylocal unitary invariant entanglement measure in the2case must
take the form

E(p) := F(x1, x2) +tr(09)G(x1, x2)

whereF, G are functions which depend on the wBYp) is defined. We think that this result
must be useful for classifying entanglement.

Note added in proof. Inappendix B, the form given fdf (¢) isincomplete, and the conclusion
aboutE (p) is wrong. A correction will be given in a corrigendum to this paper.
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