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Abstract. Some new identities for quantum variance and covariance involving commutators are
presented, in which the density matrix and the operators are treated symmetrically. A measure
of entanglement is proposed for bipartite systems, based upon covariance. This works for two-
and three-component systems but produces ambiguities for multicomponent systems of composite
dimension. Its relationship to angular momentum dispersion for symmetric spin states is described.

1. Introduction

Several measures of entanglement [1] or quantum correlations have been proposed: some
are associated with the preparation of the state, others with the process of purification or
distillation [2] and yet others with the notion of mutual information or relative entropy [3]. In
this paper we wish to suggest another measure, based on covariance, in which the acts of state
creation and observation are considered in a dual manner.

In practice it is very natural to describe the condition of the system (its method of
preparation or lack of it) in terms of a density matrix which is tied to the subsequent observations
on it. This is how the linkage between observer and observed occurs quantum mechanically,
and of course the results are expressed in terms of traces over appropriate functions of the
density matrix and of the operators being measured [4]. Indeed, Mermin [5] has taken the
view that the density matrix, and the correlations between observables which thereby ensue,
constituteall of physical reality.

In this paper we will also focus on the density matrix. Because binning of observations is
a necessity in practice, the dimension of the density matrix is thereby determined:N separate
bins produce a density matrixρ that is anN × N Hermitian matrix, satisfying the usual
hermiticity and trace conditions. In this way, we can regard the basis as anN -level system,
rather like a particle of angular momentumJ = (N − 1)/2. Hence, although we might be
studying the probability distribution of an observable which actually possesses a continuous
spectrum, we can still regard it as a spin-like system; in practical terms, the bigger the binning
numberN , the greater the precision of the information about the continuous variable, but
obviouslyN is never infinite. For spin measurements, we need not go to such pains because
N is fixed for us at the start.

With the focus on density matrices, we will carry out measurements (without mutual
interference) on two subsystems, 1 and 2 say, so their corresponding observables, superscripted
by (1) and (2), are commuting operators. The system will be separable [6] or ‘disentangled’ if
the larger density matrixρ is merely a direct product of density matrices associated with the
two subsystems, orρ = ρ(1) ⊗ ρ(2); a particular case arises when the initial or prepared state
is the direct product of two subsystem states,|ψ〉 = |φ(1)〉|χ(2)〉. When two subsystems are
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disentangled, the results of measuring any quantityA(1) in the first subsystem are not tied to
the results of measuring any quantityB(2) in the second subsystem; necessarily

〈A(1)B(2)〉 = 〈A(1)〉〈B(2)〉
for all choices ofA andB. However, ifρ 6= ρ(1) ⊗ ρ(2), the configuration is non-factorizable
and the covariance,

cov(A(1)B(2)) ≡ 〈A(1)B(2)〉 − 〈A(1)〉〈B(2)〉 (1)

no longer disappears.
The real issue is how to quantify the entanglement or lack of factorizability [6] of the

larger density matrix. Several proposals have been advanced in the literature, but none of them
is entirely simple or definitive [1]. However, all researchers in this field seem to agree on the
following three conditions for an entanglement measureE(ρ):

(1) E(ρ) = 0 iff ρ is separable, ie if the density matrix can be written asρ =∑i piρ
(1)
i ⊗ρ(2)i .

(2) Local unitary transformations should leaveE(ρ) invariant.
(3) E(ρ) should not increase under local measurement and classical communication

procedures, we intuitively know that such procedures cannot add non-locality
characteristics to the system being measured.

As an extra requirement, it would be nice ifE(ρ) gave some indication of the extent of violation
of Bell-type inequalities [4].

In this paper we want to put forward a concrete scheme for quantifying correlations
between two subsystems and their possible entanglement. The scheme is based on a
generalization of (1) and particular choices of operatorsA(1) andB(2), which are readily
applicable and rooted in the density matrix notion. In the next section we discuss several
matters connected with non-separability of states and their influence on subsequent subsystem
measurements. Because we deal with practical observations, the density matrix is truly discrete
and we can assume that the elements of the vector space on which it lives have equal weight.
As already mentioned, one may regard the dimensionN = N(1) + N(2) as corresponding to
a ‘spin system’, with each componentcarrying equal weight, and can adopt the same stance
for the subsystem dimensionsN(1,2). (This restriction can be relaxed if the components have
unequal weights, such as atomic energy levels at afinite temperature.)

The next section deals with the generalities of simultaneous measurements and their
covariance properties†. This is followed by our suggestion for quantifying entanglement of two
subsystems within a larger entity, which is shown to be consistent with normal expectations
for two spin-12 subsystems, whenN(1) = N(2) = 2. We also discuss the use of total spin
dispersion [7] as another measure of entanglement, with an allied appendix concerning the
Majorana–Penrose [8] representation of spin states on the Poincaré sphere. The subsequent
sections deal with entanglement measures for larger value ofN(1) andN(2). Finally we
discuss general questions pertaining to our suggested measure; these include Rovelli’s notion
that information in quantum mechanics is relational [3], Mermin’s notions of correlations
between local observables [5], and the difference between our modified correlation measure
with classical correlations for impure states.

2. Correlations and density matrices

Elementary texts on quantum mechanics teach us that the results of all physical measurements
and processes can be tied to the evaluation of traces of products of observables with the

† The authors of [9] and references therein, discuss the nuances of covariance for twononcommutingoperators.
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Hermitian density matrixρ. Thus, statistical formulae like

〈F 〉 = Tr(ρF ) Tr(ρ2) 6 1

etc are part of the standard repertoire. Of course, theρ-eigenvalues lie between 0 and 1; in
the latter case we are dealing with a pure state when the density matrix reduces to a projector
ρ → Pψ ≡ |ψ〉〈ψ |, while the most random situationρ = 1/N corresponds to the case of
maximum entropy.

The covariance for any two commuting observablesA,B in a mixed stateρ is defined as

covρ(A,B) ≡ 〈AB〉 − 〈A〉〈B〉 = tr(ρAB)− tr(ρA)tr(ρB). (2)

Clearly, varρ(A) = covρ(A,A). Less well known is the fact that pure state dispersions and
correlations can be neatly expressed in terms of a single trace. Consider the quantity

Cρ(A,B) ≡ tr([ρ,A][B, ρ])/2= tr(ρ2{A,B}/2− ρAρB) (3)

whereA andB areany two operators. This quantity will be referred to as thealternative
covariance†.

We now present some elementary results aboutCρ which follow simply from this
definition:

(1) Cρ(A,B) = Cρ(A− a, B − b), wherea, b are any two constants.
(2) Cρ(aA, bB) = abCρ(A,B).
(3) Cρ(

∑
i Ai,

∑
j Bj ) =

∑
i,j Cρ(Ai.Bj ).

(4) Cρ(A,A) = tr(ρ2A2 − ρAρA).
(5) CUρU†(A,B) = Cρ(U

†AU,U†BU), whereU is any unitary transformation. Thus a
change of basis for the state is equivalent to an inverse change of basis for the operators.

(6) Cρ(A,A†)Cρ(B,B
†) > |Cρ(A,B†)|2. This follows by considering the operatorT =

[ρ,A− cB], with c = tr([ρ,A][A†, ρ])/tr([ρ,A][B†, ρ], and noting that tr(T T †) > 0.
(7) Cρ(A,A†) is real.
(8) |Cρ(A,B)|2 is symmetrical under interchange, conjugation and change of phase of the

two operators.

All of these properties are shared by the usual covariance covρ(A,B). Nevertheless, alternative
covarianceCρ does not provide an indication of variance and covariance in the usual sense.
For instance, if the state is one of maximum entropy, on the one hand we haveCρ(A,B) = 0
for all A,B becauseρ is proportional to unity; on the other hand, the covρ(A,B) need not
vanish. Some special cases for the operatorsA,B can now be studied.

(1) If A andB commute,Cρ(A,B) = tr(ρ2AB − ρAρB).
(2) If A andB are both Hermitian,Cρ(A,B) becomes real.
(3) If A andB are both unitary,Cρ(A,A†) = tr(ρ2 − ρAρA†) 6 tr(ρ2) 6 1. Likewise for

B. SinceCρ(A,A†)Cρ(B,B
†) > |Cρ(A,B†)|2, it follows that|Cρ(A,B)|2 6 1.

More particular cases arise when the system is prepared in a pure state|ψ〉, so thatρ becomes
a projection operator andCρ(A,B) reduces to

Cρ(A,B)→ 1
2〈ψ |{A,B}|ψ〉 − 〈ψ |A|ψ〉〈ψ |B|ψ〉 = 1

2〈{A− 〈A〉, B − 〈B〉}〉
= covρ(A,B) when [A,B] = 0. (4)

Thus

Cρ(A,A)→ 〈A2〉 − 〈A〉2 = varρ(A). (5)

† Evaluating traces of larger numbers of pure state commutators, one may establish algebraically that for odd numbers
of products, the traces do vanish. For instance, tr([A, ρ][B, ρ][C, ρ]) = 0, etc.
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This is in keeping with the familiar variance–covariance inequality

varρ(A)varρ(B) > |covρ(A,B)|2. (6)

If AandB are commutingunitaryoperators and because|Cρ(A,B)|2 6 Cρ(A,A)Cρ(B,B) 6
(tr(ρ2))2 6 1, we see that alternative covariance only attains a value of 1 for pure states.

It is worthwhile comparing the two covariance functions, in relation to two commuting
observables,A,B. Since [A,B] = 0, select an orthonormal basis|i〉 wherein the operators
are simultaneously diagonalized, so

A =
∑
i

|i〉ai〈i| B =
∑
i

|i〉bi〈i|.

Then

covρ(A,B) = tr(ρAB)− tr(ρA)tr(ρB)

=
∑
i

aibi〈i|ρ|i〉 −
∑
i,j

aibj 〈i|ρ|i〉〈j |ρ|j〉

=
∑
i,j

ai(bi − bj )〈i|ρ|i〉〈j |ρ|j〉

and similarly

Cρ(A,B) = tr(ρ2AB)− tr(ρAρB)

=
∑
i,j

ai(bi − bj )〈i|ρ|j〉〈j |ρ|i〉

since
∑

j 〈j |ρ|j〉 = tr(ρ) = 1. Furthermore, note that
∑

i,j 〈i|ρ|j〉〈j |ρ|i〉 = tr(ρ2) 6 1.
Upon symmetrizing the sums, we obtain the neater expressions,

covρ(A,B) =
∑
i,j

(ai − aj )(bi − bj )〈i|ρ|i〉〈j |ρ|j〉/2 (7)

Cρ(A,B) =
∑
i,j

(ai − bj )(bi − bj )〈i|ρ|j〉〈j |ρ|i〉/2. (8)

Whilst the ordinary covariance has a clear meaning—namely, a measure of the correlations
between the results of local measurementsA andB that commute—the interpretation of the
alternative covariance is less obvious.

We can obtain more insight by choosingA = B. Sinceρ is a positive definite Hermitian
operator,〈i|ρ|i〉〈j |ρ|j〉 > 〈i|ρ|j〉〈j |ρ|i〉, for any two states|i〉, |j〉. Therefore for a general
(mixed state) density matrix,∑

i,j

(ai − aj )2〈i|ρ|i〉〈j |ρ|j〉 >
∑
i,j

(ai − aj )2〈i|ρ|j〉〈j |ρ|i〉

or

varρ(A) > Cρ(A,A). (9)

In the light of the variance inequality above it is natural to ask whether

|covρ(A,B)| > |Cρ(A,B)|
is true. In fact a single (but carefully chosen) counter-example suffices to show that it is false:
in local basesu, d for two local operatorsA⊗ 1 and 1⊗ B, take the form

ρ = |(uu + dd)〉〈(uu + dd)|/4 + |ud〉〈ud|/4 + |du〉〈du|/4
and select the local operators to be diagonal,

A⊗ 1= (|uu〉〈uu| + |ud〉〈ud|)− (|du〉〈du| + |dd〉〈dd|)
1⊗ B = (|uu〉〈uu| − |ud〉〈ud|)− (|du〉〈du| − |dd〉〈dd|).
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Evaluation of the two types of covariance leads to

covρ(A,B) = 0 but Cρ(A,B) = 1
4.

Thus the variance inequality cannot be extended to covariance.
However, an immediate consequence of the inequality, varρ(A) > Cρ(A,A), is that when

varρ(A) = 0,Cρ(A,A) = 0 too for any observableA. But 2Cρ(A,A) = tr([A, ρ][A, ρ]†);
so [A, ρ] = 0, which means thatρ is purely in an eigenstate ofA. This accords with the basic
tenets of quantum mechanics of course. The contrapositive of this result is that if [A, ρ] 6= 0,
then varρ(A) > 0.

Another worthwhile comment stems from the observation that ifX is conjugate toA in
the sense [A,X] = ih̄, then

2Cρ(A,A) = tr([ρ,A][ρ,A]†) = h̄2tr

(
∂ρ

∂X

∂ρ

∂X

†)
.

Thus,

varρ(A) = (1A)2 > h̄2tr

(∣∣∣∣ ∂ρ∂X
∣∣∣∣2
)/

2

with equality only applying to pure states. For example, the energy uncertainty is given by
(1H)2 > h̄2tr(| dρdt |2)/2, while the momentum uncertainty is given by the derivative of the
density matrix with respect to position:(1P )2 > h̄2tr(| ∂ρ

∂X
|2)/2, and so on.

For a general mixed configuration, the two inequalities,

varρ(A)varρ(B) > Cρ(A,A)Cρ(B,B) > |Cρ(A,B)|2
together with the well known inequality

varρ(A)varρ(B) > |covρ(A,B)|2
provide a lower bound for the experimentally observed variance products of any two operators,
whether or not they commute. For instance,

varρ(X)varρ(P ) >
∣∣∣∣12h̄2tr

(
∂ρ

∂X

∂ρ

∂P

)∣∣∣∣2 .
In the next section we present examples of operatorsA,B, for which there exist states such
that |covρ(A,B)| > |Cρ(A,B)| and also other states for which|Cρ(A,B)| > |covρ(A,B)|.
Henceboth inequalities must be considered jointly in an examination of the minimum of the
variance product, together with Heisenberg’s well known lower bound,|tr(ρ[A,B])|/2.

3. Correlation measures for pure states of two subsystems

This section examines the correlation properties of the entanglement of two subsystems in
a tensor product Hilbert spaceH(1) ⊗ H(2). By definition, measurements can be carried
out without mutual interference on the two subsystems so their corresponding observables,
superscripted by (1) and (2), are commuting operators. As mentioned in the introduction, a
state of the system is factorizable or disentangled if the larger density matrixρ is merely a
direct product of density matrices associated with the two subsystems, orρ = ρ(1)⊗ρ(2). For
any two local operatorsA(1) = A ⊗ 1, B(2) = 1⊗ B, it is easy to show that the covariance
disappears:

covρ(1)⊗ρ(2) (A(1), B(2)) = 〈(A− 〈A〉)⊗ 〈(B − 〈B〉)〉 = 0. (10)

This includes the case of a pure disentangled state,|φ〉 = |φ(1)〉|φ(2)〉.
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Having noted that the covariance is nonzero in disentangled states, we now refer to
the conditions imposed upon any measure of entanglement. The second condition is that
it be invariant under local unitary transformations. With this in mind, define thecovariance
entanglementfor pure states as

EA(1),B(2) (ρ) ≡ max
U=U(1)⊗U(2)

|covUρU†(A(1), B(2))|.

The maximum will clearly be invariant under additional local unitary transformations.
Since the operation of permuting the elements of a Hilbert space is unitary, all elements

of the Hilbert spaces are equally important. For this reason, it is natural to select the operators
A(1) andB(2) so as to equally weight the elements of the Hilbert space. The next section
describes several ideas for achieving this, starting with the simplest case.

3.1. Pure state correlations forN(1) = N(2) = 2

This section investigates a method for quantifying pure state entanglement in the simplest
possible non-trivial case, corresponding to two spin-1

2 systems, with Hilbert spaceH⊗H, where
H = C2 is a local Hilbert space, with orthonormal basis|u〉, |d〉. Consider two local operators
which distinguish between elements of the local Hilbert spaces. With the aim of weighting
local basis elements equally, define operators in the product basis|uu〉, |ud〉, |du〉, |dd〉 by

A(1) = σ (1)3 =


1

1
−1

−1

 B(2) = σ (2)3 =


1
−1

1
−1


and so

A(1)B(2) = σ (1)3 σ
(2)
3 =


1
−1

−1
1

 .
Next consider the pure (normalized but arbitrary) state,

|φ〉 = α|uu〉 + β|ud〉 + γ |du〉 + δ|dd〉.
Working out covρ(A,B) in this state, it is straightforward to show that the covariance is
maximized provided that|α| = |δ| = 1/

√
2, β = γ = 0, or |β| = |γ | = 1/

√
2, α = δ = 0.

Thus one may take the four independent Bell states,

|10〉 ≡ [|ud〉 + |du〉]/
√

2 |00〉 ≡ [|ud〉 − |du〉]/
√

2

|1+〉 ≡ [|uu〉 + |dd〉]/
√

2 |1−〉 ≡ [|uu〉 − |dd〉]/
√

2

as the ones that have the largest covariance. (These pure states are also known to be the most
entangled ones.) Of course they are all local unitary transforms of just one of them, say the
Bell state,|1+〉 ≡ |(uu + dd)〉/√2, with a correspondingρ = |uu + dd〉〈uu + dd|/2. If one
rotates the operatorsA,B togetherabout the ‘y-axis’ by the same amount, we can get a good
idea of how the covariance varies with rotation angle; maximization is attained when the angle
is nπ . See figure 1.

If a pure state is disentangled, then there is an orientation of the localA(1) which has
zero variance. To see this, rotate the state by local unitary transformations until the reduced
density matrix for the local operator in question is diagonalized. Since the initial state was
pure and disentangled, then it may be represented by a separable projectorρ = ρ(1)ρ(2), in
which both reduced density matrices are projectors. Thus the main diagonals ofρ(1) andρ(2)
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Figure 1. Equal-weight covariance of the Bell state|uu + dd〉/√2 under equal local unitary
transformations about two axes.

can be reduced to a single 1, with 0 elsewhere. Hence for diagonalized local operatorsA and
B in this basis,

〈A2〉 = 〈A〉2 〈B2〉 = 〈B〉2
so the variances vanishes. Figure 2 illustrates the behaviour of the variance in a two-variable
parametrization. The horizontal axis variablex parametrizes a set of pure states which
range from disentangled to a maximally entangled Bell state, and back to disentangled again,
i.e. ρ = |ψ(x)〉〈ψ(x)| where |ψ(x)〉 = cos(x)|uu〉 + sin(x)|dd〉. The second variabley
parametrizesy-axis rotations of the local spin basis (1) associated withA alone.

These results may be applied to actual spin measurements. If one knows that a state is
pure, but is not certain of the degree of entanglement, local spin measurements can be made
in a variety of directions. If the variance and covariance of these measurements vanishes in a
pure state, then the state must be disentangled.

3.2. Pure state correlations forN(1) = N(2) ≡ N > 2

Many different choices of local operatorsA(1), B(2) are possible, and different choices will lead
to different behaviour of the covariance. However, before considering two sensible choices, let
us note that forN(1) = N(2) = 2, one of the maximally entangled states can be taken to be the
state of total spin|10〉, while minimally entangled states are|11〉, |1− 1〉. Now for these state
combinations maximal entanglement happens to equate with maximal dispersion(1J )2 and
zero entanglement equates with minimal dispersion(1J )2, whereJ stands for total spin. This
suggests that for higher spin, some maximally entangled states might be found by minimizing
the total angular momentum dispersion and vice versa. This approach towards quantifying
entanglement is quite interesting in its own right and is pursued in appendix A, where we also
tie it to the Majorana–Penrose pictorial view of spin. In appendix B, by contrast, we classify
any measure of entanglement via an integrity basis for density matrix invariants.

3.2.1. Pair discrimination. Consider two-system Hilbert spaces where the local spaces may
each have dimension greater than 2. Select local operatorsA(1) = A ⊗ 1, B(2) = 1⊗ B,
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Figure 2. Equal-weight variance of a parametrized set of pure states, under different relative
orientations of the state and the local operators. The maximally entangled states havex = π/4,
and are the only states to attain a covariance of 1, whilst the disentangled states (x = 0, π/2) are
the only ones which attain a covariance of 0, for particular relative transformations of the local
operator.

whereA,B may be expressed in their respective local bases as unitary transformations of the
following diagonal matrix:

1 0 0 · · ·
0 −1 0 · · ·
0 0 0 · · ·
· · · · · · · · · . . .

 . (11)

Next, maximize the covariance over all such unitarily transformed matrices; the result is
perforce invariant under local unitary transformations of the state. Labelling the local bases
|ai〉 and |bi〉 respectively, wherei runs from 1 toN , operators like the above discriminate
between pairs of elements in a local subspace of the full Hilbert space, and treat terms of the
form |aibk + ajbl〉 as the basic element of entanglement†.

3.2.2. Equal-weight unitary operators.Since we wish to handle all the subsystem states
democratically, let us define an equal-weight local unitary operator as consisting of some
unitary transformation of a diagonal matrix comprising theN th roots of unity. (Note that these
matrices are not Hermitian whenN > 3 and cannot correspond to observables.) Here the local
weight unitary matrices in their corresponding diagonalizing basis, up to an overall phase, are

† Another possibility is to replace all the zeroes along the main diagonal ofA or B with 1 or−1; this makes the
operatorU unitary, which means that its variance is simply 1−|〈U〉|2. However, the distribution of the±1 eigenvalues
is not self-evident, except for the spin-1

2 ⊗ spin-12 case.
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given by 
exp(2iπ/N)

exp(4iπ/N)
. . .

1

 .
Only for the spin-12 × spin-12 case, do these operators correspond exactly to the pairwise local
unitary operators used previously. The next nontrivial case isN = 3, or spin-1× spin-1.
In this case one can see that all states which are local unitary transformations of the pure
state|a1b1 + a2b2 + a3b3〉/

√
3 have a maximal covariance of 1. To understand why, rotate

the equal-weight unitary operators so that the local statesa1, a2, a3 andb1, b2, b3 produce
eigenvalues which are respectively conjugate pairs. This yields〈A(1)B(2)〉 = 1. However,
〈A(1)〉 = 〈B(2)〉 = 0, so the maximized covariance is 1.

What of other states, such as|a1b1 + a2b2〉 whenN = 3? The following theorem gives a
necessary and sufficient condition for a state to exhibitCρ = 1, with respect to these equal-
weight operators and is in agreement with all other pure state entanglement measures.

Theorem. The only pure states which attain the maximized covariance of 1 under equal-
weight local operators are states which are local unitary transformations of|a1b1 + a2b2 +
· · · + aNbN 〉/

√
N . Any other states exhibit smaller correlations.

Proof. In a tensor product spaceH(1) ⊗H(2), consider the state

|ψ〉 =
∑
i,j

cij |aibj 〉

wherepij ≡ |cij |2 > 0 and
∑

i,j pij = 1, and the orthonormal bases|ai〉, |bj 〉are a complete set
of eigenstates for the diagonalized equal-weight unitary operatorsA(1), B(2), with eigenvalues
ak = exp(2iπk/N), bj = exp(2iπj/N) respectively. Recalling the result for suchA(1), B(2)

that

(1− |〈A(1)〉|2)(1− |〈B(2)〉|2) > |〈A(1)B(2)〉 − 〈A(1)〉〈B(2)〉|2

we see that a maximized covariance of 1 is only attainable in a state where〈A〉 = 〈B〉 = 0,
whereupon the covariance reduces to

Cψ(A
(1), B(2)) =

∣∣∣∣∑
i,j

pij aibj

∣∣∣∣.
In what cases is this expression maximized, subject to the condition that the mean values of
the operators remain zero?

We are seeking to maximize|∑pijaibj | subject to∑
pij = 1

∣∣∣∣∑pijai

∣∣∣∣ = 0

∣∣∣∣∑pijbj

∣∣∣∣ = 0.

By the triangle inequality,∣∣∣∣∑pijaibj

∣∣∣∣ 6 p11|a1b1| +
∣∣∣∣ ∑
i,j>1

pijaibj

∣∣∣∣ 6 · · · 6∑
i,j

pij |aibj |

where equality holds at every stage only if all the complex numbersai, bi have equal and
opposite phase. This means that we are pairingai, bj such that nonzeropij (only for i = j )
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are associated in a one-to-one manner withaibi = 1 for all such pairs, otherwise the parallelism
of the complex numbers will be lost. This will ensure that∑

i

pii |aibi | =
∑
i

pii = 1.

At the same time we have to guarantee that the average values ofA and B vanish or
|∑piiai | = 0, |∑piibj | = 0. Since

∑
i ai =

∑
i bi = 0, a sufficientcondition for this

is that for all such pairs, the weightings are equal orpii = 1/
√
N ; in other words everyai and

its correspondingbi = a∗i only occurs at most once in the terms with equal nonzero weighting.
(Actually one may introduce an arbitrary phase intocii without affecting this conclusion, but
we have chosen not to do so.)

Having established that the states which maximize the covariance can take the form
|aia∗1 + a2a

∗
2 + · · ·〉, we should point out that it is not necessary forall the terms to be

paired up. Consider the caseN = 4, or spin-32 ⊗ spin-32 systems, with basesa1, . . . , a4 and
b1, . . . , b4, respectively. It is possible to attain maximized covariances of 1 under the equal-
weight measuresbothfor |ψ〉 = |a1b1 +a2b2〉/

√
2 and for|φ〉 = |a1b1 +a2b2 +a3b3 +a4b4〉/2.

This is achieved by choosing eigenvalues so that〈A(1)〉 = 〈B(2)〉 = 0 and yet pick eigenvalues
such that the values ofA(1)B(2) in the states|a1b1〉 . . . |a4b4〉 are all 1. As we are in a four-
dimensional space, we can achieve this by taking the eigenvalue sets{1,−1} and{1, i,−1,−i}
for both operators on both states|ψ〉 and|φ〉, respectively.

This observation means that the ‘equal-weight’C-based measures forN > 2 are not
measures of entanglement, under the standard criteria. Information-based entanglement
measures, such as the relative entropy, specify that|ψ〉 is less entangled than|φ〉. It
appears that the covariance-based measures of entanglement are most useful when dealing
with spin-12 ⊗ spin-12 systems, since in this case there is no ambiguity as to the choice of
eigenvalues. Similarly for operators of prime dimension, such ambiguities are absent, because
there is only one way to arrive at a maximally correlated state: the non-uniqueness only pertains
to composite-dimensional local spaces. �

The above result demonstrates that for pure states, the reduced density matrices must be
diagonalized in order to maximize the covariance of the diagonalized local unitary operators.
However, for mixed states it is not at all obvious that the reduced density matrices must be
diagonalized in order to maximize the unitary matrix covariance. This issue will be examined
in section 4.

3.3. Pure state correlations forN(1) 6= N(2)

For spaces of differing dimension, such as spin-1× spin-12, the covariance of the pairwise
operators behave just as in the other cases. However, if the equal-weight local operators are
used, covariances of 1 arenot attainable. This reflects the fact that the bases have different
sizes, and so there is no way to pair up elements between the bases in a one-to-one manner so
as to produce a set of product eigenvalues with the same phase.

The simplest example which exhibits this effect is a spin-1
2 ⊗ spin-1 space, with equal-

weight operators

A(1) = diag(1,−1)⊗ 1 B(2) = 1⊗ diag(1, exp(2iπ/3), exp(4iπ/3)). (12)

As with the proof that the states of maximum covariance are|a1b1 + · · · + anbn〉, a covariance
of 1 is only attainable if〈A(1)B(2)〉 = 1; we also need the complex numberspijaibj to have
the same phase (where the state has Schmidt decomposition|φ〉 =∑ij

√
pij |aibj 〉 in the basis

of eigenvalues of the operatorsA(1), B(2)). Following similar arguments to those used in the
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Table 1.

Density matrix |covρ(A(1), B(2))|2 |Cρ(A(1), B(2))|2

ρ1 = [|uu〉〈uu| + |dd〉〈dd|]/2 1 0
ρ2 = [ 1

2 |uu〉〈uu| + 1
4 |uu + dd〉〈uu + dd|] 3

4
1
4

ρ3 = |uu〉〈uu| 0 0
ρ4 = |uu + dd〉〈uu + dd|/2 1 1

proof, it is not possible to choosepij so that the direction condition is satisfied; this is because
no repetitions ofai or bj values can occur in the set of nonzeropij , since the resultingpijaibj
would not have the same phase. However, it is not possible to partially pair up the given set of
eigenvalues so that the directions of the products are the same, by straightforward enumeration
of the cases. Thus states in this basis cannot attain covariances of 1.

Clearly many other local operators can be defined which provide a variety of different
correlation measures for two-system states, but none stands out.

4. Correlation measures for mixed states

Making a distinction between quantum and classical correlations has proved a thorny problem
in the study of quantum entanglement. The nature of the problem may be seen when
comparing the two states, one pure and one mixed, which possess the same covariance for
A(1) = B(2) = σ3:

1
2|uu + dd〉〈uu + dd| and 1

2|uu〉〈uu| + 1
2|dd〉〈dd|.

The first state is a Bell state and is maximally entangled, whilst the second state is a mixture of
disentangled projectors, and is normally regarded as being disentangled. As both states exhibit
correlations, it is natural to ask whether the alternative covariance introduced in section 2
provides a way of distinguishing between classical and quantum correlations.

4.1. Distinction betweenCρ and covρ

Take any two commuting local measurements,A(1) = A ⊗ 1, B(2) = 1⊗ B, and define the
function

EAB(ρ) ≡ maxU |CUρU†(A(1), B(2))|2 (13)

where the maximum is now taken over all local unitary transformations of the generalmixed
density matrixρ. In previous sections we investigated the behaviour of this function for pure
states (whenCρ reduces to the covariance), and found that it appeared to have many of the
properties desirable in a pure state entanglement measure.

The situation where the density matrix corresponds to an impure configuration is more
intriguing. Table 1 provides a comparison of the behaviour of the two maximized covariance
entanglement measures, in several example configurations, which illustrate the distinction
between|covρ(A(1), B(2))|2 and|Cρ(A(1), B(2))|2.

The illustrative stateρ4 is pure but entangled,ρ3 is factorizable and therefore disentangled,
while the matrixρ1 is not factorizable but can be expressed as a sum of separable projectors;
thereforeρ1 should represent a disentangled configuration, according to standard expectations.
By inspecting the table we see that covρ(A

(1), B(2)), being nonzero, is not a good entanglement
measureE(ρ), but the alternativeCρ(A(1), B(2)) is better in that it does vanish.

The alternative covarianceC in mixed states is bounded above by tr(ρ2), so the state must
be pure to obtain a covariance of 1 under local unitary transformations. Another point worth



1906 R I A Davis et al

(a) |covρ(A(1), B(2))| (b) |Cρ(A(1), B(2))|
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Figure 3. (a) Equal-weight covariance magnitude of a parametrized mixture of different Bell states.
(b) Equal-weight alternative covariance magnitude for the Bell-state mixture. The parametrization
in both cases is any one of the following:ρ = x|b1〉〈b1| + (1 − x)|b2〉〈b2|, where either
|b1〉 = |ud±du〉/

√
2, |b2〉 = |ud∓du〉/

√
2, or else|b1〉 = |uu±dd〉/

√
2, |b2〉 = |ud∓du〉/

√
2.

The Bell states must be different in these parametrizations, to obtain a non-trivial result. The result
is not a maximization over all local unitary transformations.

(a) |covρ(A(1), B(2))| (b) |Cρ(A(1), B(2))|
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Figure 4. (a) Equal-weight covariance magnitude of a parametrized mixture of different Bell states.
(b) Equal-weight alternative covariance magnitude for the Bell-state mixture. The parametrization
in both cases isρ = x|b1〉〈b1| + (1− x)|b2〉〈b2|, where|b1〉 = |uu ± dd〉/

√
2, |b2〉 = |ud ±

du〉/√2. The Bell states in these parametrizations may be used in any combination allowed by the
above expression (i.e. all four sign combinations are permitted). The result is not a maximization
over all local unitary transformations.

remembering is that for configurations of maximum entropy whereρ ∝ 1 and commutes with
all operators,C is automatically zero.

Figures 3 and 4 depict the squares of the equal-weight classical covariance and alternative
covariance of a parametrized mixture of different Bell states. They show that both covariance
measures attain a maximum of 1 only for the pure states, and that the behaviour of these
functions depends upon the kind of Bell states involved in the mixtures.

For anychoice ofA(1), B(2), a maximizedCρ(A(1), B(2)) of zero occurs for many mixed
configurationsρ which are disentangled, according to the standard definition of a mixed
state, such as the states of maximum entropy withρ ∝ 1. This behaviour of the alternative
covariance for ‘partially entangled’ configurations is what one would naively expect for a mixed
configuration entanglement measureE(ρ). However, there is a particular class of mixed states
which are disentangled according to the commonly accepted definition of a mixed state, whilst
exhibiting nonzero alternative covariance properties.
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4.2. Conditions on entanglement measures

This section assesses the alternative covariance as a measure of entanglement, according to
the principles outlined by Vedral and Plenio [1].

Firstly, consider the cases where a state exhibits zero quantum correlation. A mixed
configuration is usually defined to be separable if it can be written as a sum of separable
projectors; thus

ρ =
∑
j

pjρ
(1)
j ⊗ ρ(2)j ρ

(n)
i ρ

(n)
j = δijρ(n)i .

Then for any suchρ,

Cρ(A
(1), B(2)) = tr(ρ2A(1)B(2) − ρA(1)ρB(2))

= tr

((∑
piρ

(1)
i A⊗ ρ(2)i

)(∑
pjρ

(1)
j ⊗ Bρ(2)j

))
−tr

((∑
piρ

(1)
i A⊗ ρ(2)i

)(∑
pjρ

(1)
j ⊗ ρ(2)j B

))
=
∑∑

pipj tr(ρ
(1)
i Aρ

(1)
j ⊗ ρ(2)i Bρ(2)j

−ρ(1)i Aρ(1)j ⊗ ρ(2)i ρ(2)j B)
=
∑∑

pipj tr(1)(ρ
(1)
i Aρ

(1)
j )tr(2)(ρ

(2)
i Bρ

(2)
j − ρ(2)i ρ(2)j B)

or ∑∑
pipj tr(1)(ρ

(1)
i Aρ

(1)
j − ρ(1)i ρ(1)j A)tr(2)(ρ(2)i Bρ(2)j )

which is guaranteed to vanish if theρ(n)i are projectors.
Now consider cases where the density matrix is a mixture like

1
2|uu〉〈uu| + 1

8|(u + d)(u + d)〉〈(u + d)(u + d)|.
Here, it can be shown that these mixtures produce nonzeroCρ(A,B), because their expansion
into projector traces may be used to extract off-diagonal elements of observablesA,B in
suitable local bases. Take, for instance, the two local operators on separate spin-1

2 bases,
A = B = σ2, which is a unitary transformation of the equal-weight matrixσ3 used previously.
The terms in the expansion ofC above are non-vanishing only if non-parallel, non-orthogonal
projectors are used. Thus we evaluate the two non-vanishing terms, with local projectors
|u + d〉〈u + d|/2, |u〉〈u| giving

〈u + d|u〉〈u|A|u + d〉(〈u|B|u + d〉〈u + d|u〉
−〈u + d|B|u〉〈u|u + d〉) = (−i)(−i − i) = −2

〈u|u + d〉〈u + d|A|u〉(〈u + d|B|u〉〈u|u + d〉
−〈u|B|u + d〉〈u + d|u〉) = (i)(i + i) = −2.

These terms do not cancel, and the other two terms in the expansion are zero, so the alternative
covarianceCρ is nonzero even though we are dealing with a disentangled state, according to
the usual terminology.

From this we deduce that the measureE based on alternative covariance isnot a measure
of entanglement (according to the conditions provided by Vedral and Plenio) when mixed
states are encountered, since it violates the first condition for such measures.
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4.3. Local purification procedures

The third condition on entanglement measures proposed by Vedral and Plenio is that the
entanglement of a state should not increase under the three types of purification processes
(LGM, CC and PS).

Let us consider all possible LGM, CC and PS measurement operations which act on a
disentangled state

ρ0 = |uu〉〈uu|
and yield states which exhibit nonzero quantum covarianceCρ(A

(1), B(2)), such as

ρ1 = 1
2|uu〉〈uu| + 1

8|(u + d)(u + d)〉〈(u + d)(u + d)|.
The change fromρ0 to ρ1 may be performed by the classically correlated set of local
measurementsV1, . . . , V8, where

V1 = 1√
2
|uu〉〈uu| = 1√

2
|u〉〈u| ⊗ |u〉〈u|

V2 = 1

2
√

2
|(u + d)(u + d)〉〈uu| = 1

2
√

2
|(u + d)〉〈u| ⊗ |(u + d)〉〈u|

together withV3, . . . , V8 which have〈ud|, 〈du|, 〈dd| in place of〈uu|. Thus
∑
Viρ0V

†
i = ρ1,

and
∑
V

†
i Vi ∝ 1, so this represents a complete measurement.

Because this set of operationsVi is local, we would expect any measure of entanglement
to not increase under these operations. However, the state which results from this procedure
does in fact exhibit nonzeroCρ , as was demonstrated earlier. Therefore, we have found
a complete local general measurement for which the entanglement increases based upon
alternative covariance. Thus the unitarily maximizedCρ does not satisfy the conditions for a
measure of mixed state entanglement proposed by Vedral and Plenio.

5. Conclusion

We have shown that for pure two-state systems, the maximized covariance agrees with other
measures of entanglement in specifying which states are disentangled and which are maximally
entangled. For subspaces of larger dimension, the situation is less clear-cut since there are
ambiguities in the process of selecting eigenvalues for the local operators, but it is possible
to obtain information about the degree of higher-order correlations of two subsystems in this
way.

The variance and covariance could be used to indicate the best measurements to make
to detect entanglement of bipartite systems, by locating the unitary transformation which
produces maximum covariance. However, the problem of mixed state separability measures
is not resolved by the correlation functionsC and the covariance, as we have used them in
this paper. Nevertheless, the link between alternative variance and the conjugate variable
derivatives for position, momentum, energy and time is intriguing, and might be extended to
other quantized models involving conjugate variables. The inequality var(X) > C(X,X),
with equality for pure states, should be applicable to situations where observations are made
upon impure states.

It is interesting to observe that for pure density matricesρ, both the average value and the
variance of an operatorF are symmetrical under the interchange ofρ andF , when expressed
in the form

〈F 〉 = tr(ρF ) var(F ) = Cρ(F, F ) = tr(ρ2F 2 − ρFρF).
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This motivates the suggestion that a quantum state|ψ〉 is best represented not as a ket, but
as a projection operatorPψ = |ψ〉〈ψ |. Any measurement process on the state is relational
in the sense of Rovelli [3]: the notion of state vector reduction is replaced by the notion that
every new measurement process requires a new Hilbert space to be defined, with new operators
corresponding to the new state and any successive measurement made upon the state. The basic
idea is that a measurement treats the state information in a comparative sense, with meaning
only in relation to the operator corresponding to the observable quantity being measured.

The process of state reduction to the eigenstate of some observable under a measurement
is an apparent oneresulting not from the action of theoperator corresponding to the
measurement, but fromsome otherphysical process which occurs in the measurement, such
as a filtering process of some kind (like the case of a Stern–Gerlach experiment), causinglater
measurements on the physical system to berepresentedin a completely new basis by new state
and measurement operators. The adoption of the projector as a unit of relational information
does not change any predictions of quantum mechanics in terms of average values†.

Appendix A. The Majorana–Penrose representation of symmetrized states

It is well known that a spin state|j,m〉 can be obtained by forming a fully symmetric direct
product ofn = 2j spin-12 states. Denoting the spin-1

2 states by|u〉 = | 12, 1
2〉, |d〉 = | 12,− 1

2〉,
the spin-j states are given by

|j, j〉 = |
2j︷ ︸︸ ︷

uu . . . u〉
|j, j − 1〉 = [|du . . . u + ud . . . u + · · · + uu . . . d〉]/

√
2j

· · · · · ·

|j,m〉 =
∑
sym

|(u)j+m(d)j−m〉
/√

2jCj+m

· · · · · ·
|j,−j〉 = |dd . . . d〉.

(14)

In the Majorana–Penrose representation [8] these states are mapped onto the unit sphere, with
stereographic projectionz taken from the south pole onto the complex plane by making the
association

|j,m〉 ↔
√

2jCj+mz
j+m. (15)

This association may be rewritten in terms of the spin-1
2 basis in an elegant way which

emphasises that thezi powers are proportional to a symmetrized sum wherei spin-12 terms of
spin|u〉, and(n− i) spin|d〉 terms are selected, namely

2jCj+mz
j+m ↔ |u . . . ud . . . d〉 + · · · + |d . . . du . . . u〉 (16)

where the sum is taken over all ways of selectingi spin-12 elements from the 2j + 1 elements
in the spin-j space.

Thus from a general spin state|ψ〉 =∑m ψjm|jm〉 we can define a polynomial

p(z) = a2j z
2j + a2j−1z

2j−1 + · · · + a01

† The paradox of Schrödinger’s cat is resolved by representing the cat’s state and the measurement on an equal footing
as projection operators in the (relational) basisfor that measurement. Traces are taken to predict average real-number
values, but at no stage does one say ‘the cat is in a state’, since the state projection operatorPψ only has relational
significance in this interpretation.
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South pole Figure 5. Majorana representation of the state
with polynomial(z− i)(z + i).

where aj+m ≡
√

2jCj+mψjmz
j+m. The roots of this polynomial‡ give 2j points on the

stereographic plane and, correspondingly, a general spinj state, being some superposition
overm values, will be described by 2j distinct points on the Poincaré sphere, obtained by
stereographic projection of the roots placed on the horizontalx–y plane. It is worth remarking
that another spin state|ψ ′〉, represented by another polynomial,

p′(z) = a′2j z2j + a′2j−1z
2j−1 + · · · + a′01

yields a scalar product,

〈ψ ′|ψ〉 =
∑
m

aj+ma
′∗
j+m/

2jCj+m.

In the case where the degreem of the polynomial is less than 2j , 2j − m additional
points at the south pole (the projective point) are added to the projection, corresponding to
‘roots at infinity’. Figure 5 depicts an example of stereographic projection for the spin-1 state
represented by the quadratic polynomial

p(z) = (z− i)(z + i) = z2 − 1↔ [|11〉 + |1− 1〉]/
√

2. (17)

By contrast, for spin-1, the maximum and minimum spin states|1, 1〉 and|1,−1〉 correspond
to two repeated points at the north and south poles, respectively; on the other hand, the pure
intermediate spin state|1, 0〉 = |ud + du〉/√2 corresponds to one point at the north pole
and the other at the south pole. The Bell states,|1,±〉 ≡ |uu ± dd〉/√2 are also antipodal
points, but are located around the equator, specifically at coordinates (1,0,0) and (−1, 0, 0);
and (0,1,0) and (0,−1, 0). Under all accepted measures of entanglement, the spin-zero state
|0, 0〉 = |ud−du〉/√2, the Bell states|1,±〉and|1, 0〉 (in fact, all local unitary transformations
of these states) are maximally entangled. This suggests that taking the two points as ‘far apart
as possible from one another’ on the Poincaré sphere is one possible way of producing maximal
entanglement.

‡ The action of exponential functions of angular momentum operators on Majorana–Penrose polynomials are
amusing. We quote them without proof: (i) exp(ξJz)p(z) = exp(−ξj)p(zeξ ); (ii) exp(ξJ−)p(z) = p(z + ξ);
(iii) exp(ξJ+)p(z) = z2j p(z/(ξz + 1)).
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Another point of interest is that for these spin-1 states, the rotationally invariant dispersion
measure,

(1J )2 ≡ 〈 EJ · EJ 〉 − 〈 EJ 〉 · 〈 EJ 〉
attains the maximum value of 2, because〈 EJ 〉 vanishes; so it also suggests that the quantity
(1J )2/〈 EJ 〉2 might serve [7] as a way of characterizing the entanglement of the individual1

2
spins that make up thej state. In fact, the dispersion inJ is equivalent to dispersion in any of
the componentsJ (i) and to the covariance of any two components. This is because the total
angular momentum isJ = J (1) + J (2) + · · · + J (n) and all states on the Poincaré sphere are
symmetrized; therefore the values taken by all the localJ (i) are the same. Thus when acting on
these symmetrized states,J = nJ (i), for all i = 1, 2, . . . , n, and the variance of any localJ (i)

is just as good an entanglement measure. We can also take any two subspacesi, j and evaluate
the covariance ofJ (i) andJ (j); the space being symmetrized, anyi, j (includingi = j ) may be
taken! Thus the symmetrized states of maximized(1J )2 have maximal covariance of the local
J (i), as well. Finally, since we are dealing with spin-1

2 states,J (i) have only have two distinct
eigenvalues, and hence these local operators are directly proportional to the equal-weight local
operators of dimension two defined in section 3.

We may use these considerations to find the symmetrized states of maximum dispersion
for arbitrarily highJ—these states will have the maximum covariance of any two localJ (i).
From the result in section 4, the local covariance attains the maximum value of 1 whenever
the reduced density matrices for the subspace on which those local operators jointly act are
of maximum entropy. For a spin-1

2 space, the reduced density matrices must be of the form
ρi = 1

2[|ui〉〈ui | + |di〉〈di |].
For generalj -values, observe that disentangled states on the Poincaré sphere are fully

factorizable since the states are symmetrized. Clearly, a fully factorizable state will have zero
local operator variance for any operator with the local state as an eigenstate. Their Poincaré
sphere representation simply consists ofn = 2j repeated roots, since the general symmetrized,
factorized state is a product ofn kets

(a|u〉 + b|d〉) . . . (a|u〉 + b|d〉) . . .↔ (az + b)n

because of thez-symmetrization properties for spinn systems.
Next it is useful to ask which states maximize(1J )2 if this is to serve as a possible

indication of entanglement. Whenj = 1, as we have seen in section 3, the states are represented
on the Poincaŕe sphere by two diametrically opposed points, one example being the state
|uu+dd〉/√2. Whenj = 3

2 the states having maximum(1J )2 are those states which maximize
the covariance of any two local operators. As was seen, such states must be expressible as
symmetrized unitary transformations of(|uu〉+|dd〉)/√2 in the local basis for the two operators
in question. Thus the overall states must be expressible, by symmetry, as global rotations of
|uuu + ddd〉/√2. These are the ‘triangular’ states, namely those represented by three points
on the Poincaŕe sphere arranged in an equilateral triangle around any great circle—a global
unitary transformation (which preserves symmetrization) simply rotates this configuration
around the sphere. Choosing the circle to lie equatorially, a polynomial producing such roots is
p(z) = z3+1, which corresponds to the state|ψ〉 = [| 32, 3

2〉+| 32,− 3
2〉]/
√

2= |uuu+ddd〉/√2.
When j = 2, the symmetrized states of maximum dispersion are the states with a

tetrahedral representation on the sphere. Choosing one of the apices of the tetrahedron at
the north pole, we arrive at the polynomial

p(z) = z(z +
√

2)(z−
√

2eiπ/3)(z−
√

2e−iπ/3) = z4 + 2
√

2z

which corresponds to the maximally entangled state

|ψ〉 = [|2, 2〉 +
√

2|2,−1〉]/3= |uuuu + uddd + dudd + ddud + dddu〉/
√

5.
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Figure 6. Majorana representation of the state with
polynomialp(z) = z3 + 1.

Note that here, as in the previous case, the maximal|ψ〉 lead to vanishing mean values〈ψ | EJ |ψ〉.
Forj = 5

2 there are two classes of states with maximum dispersion, with slightly different
geometries. The first of these is pyramidal with one apex at the north pole and the other four
apices at equal latitude (or any global rotation of this state), while the second has one point at the
north pole another at the south pole and the remaining three points distributed equilaterally on
the equator. Hence the first configuration corresponds to the polynomialp(z) = z5 + z4/

√
3

or the state|ψ〉 = [| 52, 5
2〉 +

√
5
3| 52,− 3

2〉]/
√

8
3, whereas the second configuration leads to

p(z) = z4 + z, or the state [| 52, 5
2〉 + | 52,− 3

2〉]/
√

2. Both choices have maximum(1J )2 and so
the total spin variance is unable to discriminate between them. However, local equal-weight
measures are able to discriminate between these states, so it seems that in more complicated
cases entanglement is most naturally described by keeping the covariance of local operators
in mind.

In order to use the (rotationally invariant) dispersion as a measure of pure state
entanglement, one needs to consider that the symmetrized nature of the state is a reflection of
the choice of basis. Thus, one might define the variance entanglement for a general state
as the variance of the symmetrized form of the state, under an appropriate local unitary
transformation. However, it is not always possible to symmetrize an arbitrary state with
local unitary transformations in spaces of spin-1 or higher. Thus it seems that the dispersion
is not a perfect entanglement measure, although it does give an indication of the degree of
entanglement of these particular states, because of its connection with the covariance through
symmetrization.

Appendix B. An integrity basis for density matrix invariants

Considerρ for a compositeN(1)N(2)-dimensional system as an object transforming under
U(N(1))×U(N(2)) like {1̄}{1}×{1̄}{1}, where{1̄}{1} denotes the reducibleN2 representation
of U(N); in tensor notation we can writeρ in the formρbjai , where early Latin letters refer to
the first unitary group and the later letters stand for the second group. Here we want to count
the number ofU(N(1)) × U(N(2)) singletsSn in the symmetrized productρn. Thus, in the
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notation where representations are labelled by partitions†,

ρn ∼ ({1̄}{1} × {1̄}{1})⊗ {n} ≡
∑

κ◦λ◦µ◦ν∈{n}
{κ̄}{λ} × {µ̄}{ν}.

However,{κ̄}{λ} can only contain a singlet ifκ ≡ λ. Moreover,κ = λ andµ = ν have to
be, respectively,N(1) andN(2) part partitions, say ‘κ `N(1) n’, etc, otherwise{κ} vanishes in
U(N(1)). Therefore

ρn|{0}×{0} ⊆
∑

κ`
N(1) n,λ`N(2) n

{κ̄}{κ} × {λ̄}{λ}.

But it is known thatα ◦ α 3 {n} for anyα ` n and moreover the order is immaterial, because
the Clebsch series is symmetric. Thus we have only to count the appropriate partitions,

Sn = |ρn|{0}×{0} = |{κ, λ : κ `N(1) n, λ `N(2) n}|.
This is not easy to work out in the general case, but is relatively simple for the case
N(1) = N(2) = 2. Whenn is even or odd, the partitions are

n = 2k : {2k, 0}, {2k − 1, 1}, . . . {k, k}
n = 2k + 1 : {2k + 1, 0}, {2k, 1}, . . . , {k + 1, k}.

Now the generating function for invariants of ordern in ρ is writtenF(q) := ∑∞
n=0 Snq

n.
Including the even and odd cases,

F(q) =
∞∑
k=0

[(k + 1)2q2k + (k + 1)2q2k+1] = 1 +q2

(1− q2)2(1− q) .

The denominator ofF(q) is crucial for its interpretation: we can recognize that for the 2× 2
case invariants are freely generated by two quadratic factors (namely(1−q2)2) and one linear
factor (namely(1−q)), but there is an extra quadratic factor in the numerator which may only
be used once. We may associate these factors with

(1) Linear trρ = tr(1)tr(2)ρ = 1 anyway

(2) Quadratic χ1 ≡ tr(1)(tr(2)ρ)
2 = ρbiai ρajbj and χ2 ≡ tr(2)(tr(1)ρ)

2 = ρajai ρbibj
(3) Extra quadratic εaa′ε

bb′εii ′ε
jj ′ρaibj ρ

a′i ′
b′j ′ .

The last of these invariants is obviously related toχ1, χ2 and tr(ρ2); however, we do not get
a new invariant from its square because it is then expressibleentirelyas products ofχ1, χ2, tr
ρ2 and (trρ)2 ≡ 1. Thus effectively tr(ρ2) is only allowed once.

We conclude thatanylocal unitary invariant entanglement measure in the 2×2 case must
take the form

E(ρ) := F(χ1, χ2) + tr(ρ2)G(χ1, χ2)

whereF,G are functions which depend on the wayE(ρ) is defined. We think that this result
must be useful for classifying entanglement.

Note added in proof. In appendix B, the form given forF(q) is incomplete, and the conclusion
aboutE(ρ) is wrong. A correction will be given in a corrigendum to this paper.
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